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Power #ows from a vibratory machine to its supporting structure are of primary concern
in a passive or active isolation system design. Although in the literature there is a fair
number of investigations on the power inputs to beams, plates or the like, few attempts have
been made for other commonly used structures such as cylindrical shells. In this paper, the
vibratory power #ows from a rigid-body machine to an elastic cylindrical shell are studied
considering the contributions of the non-radial (tangential and axial) displacements and
forces. In particular, it is argued that the notion that the motion of a thin shell is primarily
radial does not necessarily dictate that the power transmissions are predominantly carried
out by the radial displacement. This point is subsequently illuminated through numerical
examples. Another issue discussed here is concerned with the e!ects on the power #ows of
the cross couplings of the (di!erent) displacement components. It is shown that even though
the contributions of the cross couplings are usually insigni"cant, they may become
important if the vibration isolators are substantially hard as compared with the local shell
sti!ness or impedance. This assertion is particularly useful when an experimental technique
is used to measure the vibratory power #ows into a supporting structure.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The reaction forces (or force transmissibility functions) are often used to measure the
performance of an isolation system. However, since the reaction forces at each isolator
location are typically di!erent in terms of phase and direction, one may "nd it di$cult to
directly use them to de"ne an objective or cost function for the purpose of design
optimization. This problem is further compounded by the fact that the magnitudes of the
reaction forces are not necessarily a sensitive gauge of the severity of the vibrations on the
receiving structure. Recently, vibrational power #ows from a machine into its supporting
structure have been widely used to assess the e!ectiveness of passive and active vibration
isolation systems [1}10]. Gardonio et al. [11, 12] compared the minimization of total
power transmission with several other active control strategies such as the cancellation of
out-of-plane forces. It is concluded that the control of total power gives the best results under
ideal conditions. The importance of considering the power #ows associated with the rotational
displacements (or alternatively, isolator rotational sti!nesses or moment excitations) are
discussed in references [13}16], where it is shown that the power #ows associated with the
rotational displacements tend to become more important as frequency increases.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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It should be pointed out that the receiving or supporting structures involved in these
investigations are mostly beams, plates or the like. Howard et al. [9] studied the power
transmission from a vibrating rigid body into a thin supporting cylindrical shell through
a set of passive and active isolators. It is demonstrated that the real power transmitted into
the supporting shell can be substantially reduced by employing, in parallel with existing
passive isolators, active isolators adjusted to provide appropriate control forces. While their
work is important and de"nitely useful to other researchers, it may have two #aws. The "rst
one is that the axial and tangential displacements of the shell are assumed to be small
enough to allow the corresponding forces and their related power transmissions to be
ignored in the subsequent calculations. Secondly, only the odd modes (for the simple shell)
are used to represent the radial displacement and the impact of the even modes is
incorrectly considered by repeating the calculations simply with the co-ordinate system
rotated 903 in the positive circumferential direction. In this study, these two problems are
"rst corrected in the formulation. It is then demonstrated that the non-radial displacements
can be as important as the radial displacement in conveying vibrational powers when a load
is not applied primarily in the radial direction. The impact of the cross coupling of di!erent
displacement components is also discussed with necessary details.

2. DYNAMIC DESCRIPTION OF A COMPOSITE ISOLATION SYSTEM

2.1. THE MOTION OF A RIGID-BODY MACHINE

Figure 1 shows a vibratory machine that is mounted onto a circular cylindrical shell
through multiple vibration isolators. It is assumed that the machine is subject to a set of
prescribed loads such as force, moment and their combinations. In this study, the machine
will be modelled as a rigid body, which is usually a valid simpli"cation when the "rst
natural frequency of the machine (structure) is signi"cantly (say, twice) higher than the
upper bound of the frequency range of interest. In dynamics, a rigid body is characterized by
a 6�6 mass matrix
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where m is the mass of the machine, and I
��
, I

��
,2, I

��
are the moments of inertia. A list of

symbols is given in Appendix B.
The di!erential equation for the motion of the rigid body can be written as

MuK �"f�#

��
�
���

R�
�
, (2)

where u� is the displacement vector of the center of gravity (CG) of the machine, R�
�
is the

load vector resulting from the reaction forces at the ith mounting point, f represents all the
other forces applied on the machine, and N

�
denotes the total number of isolators.

The displacements at any mounting point can be directly obtained from

u
�
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�
u�, (3)



Figure 1. Schematic of a composite vibration isolation system.
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with a�
�
, a�

�
and a�

�
being, respectively, the projections onto x-, y- and z-axis of the distance

(vector) from the machine CG to the ith isolator.
In this study, each isolator will be modelled as a lumped sti!ness element with a negligible

mass. Then, the reaction forces at the ith isolator location can be expressed as
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or, by making use of equation (3),
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where K
�
is the sti!ness matrix for the ith isolator, and u

�
and u�

�
are, respectively, the

displacement vectors at its upper and lower ends.
The sti!ness matrix K

�
is generally a 6�6 symmetric semi-positive de"nite matrix whose

o!-diagonal elements represent the cross coupling between di!erent components.
Mathematically, however, such a matrix can always be reduced, via orthogonal
transformations, to a diagonal matrix whose diagonal elements are the principal (sti!ness)
values of the ith isolator. Thus, without loss of generality, the sti!ness matrixK

�
will be here

represented by six simple springs in the principal directions. If p, q and r denote the three
principal axes, then one has
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where diag( ) ) denotes the diagonal matrix, K�
�
and K��

�
( j"p, q, r) are, respectively, the

sti!nesses of the linear and the rotational springs in the j direction, and
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being a transformation matrix whose elements are simply the direction cosines of the
principal axes [10].

The (reaction) forces at each mounting point can be easily transferred to the CG of the
rigid body, that is,

R�
�
"G�

�
R

�
. (10)

Substituting equations (6) and (10) into equation (2) results in
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where
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�
. (12, 13)

If the vibrations of the supporting structure are so small that the corresponding forces,
���

���
Kg

�
u�
�
, are essentially negligible compared to the external force f, equation (11) alone

can be used to solve for the motion of the machine as in a traditional vibration isolation
analysis. Otherwise, the solution cannot be independently obtained without explicitly
knowing the motions of the supporting structure at the mounting points. Thus, the motions
of the machine and supporting structure are now coupled together and have to be
determined simultaneously.

2.2. VIBRATION OF A CIRCULAR CYLINDRICAL SHELL

Assume that the supporting structure is a circular cylindrical shell of mean radius R,
thickness h and length ¸. If u, v, and w, respectively, denote the displacements in the axial x,
circumferential � and radial r directions, then the equations of the motions of the shell can
be written as
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where E, � and � are, respectively, Young's modulus, the Poisson ratio and the mass density
of the shell material; p


, p� and p� are, respectively, the distributed forces in s ("x/R), � and

r directions; and �"h�/12R�. Instead of the popular Donnell}Mushtari equations, here the
Goldenveizer}Novozhilov (also Arnold}Warburton) equations are used to determine the
shell vibrations since the Goldenveizer}Novozhilov equations are often found more
accurate in predicting the modal properties of a shell [17].

Once the three independent displacements, u, v, and w, are obtained from equation (14),
the displacement vector at any point on the shell can be readily calculated from
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The last three components in equation (15) represent the rotations about the x-, �- and
r axis, respectively.

Let R

�
be the forces at the ith isolator, the distributed forces on the right-hand side of

equation (14) can be expressed as [18]
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As often done in a response analysis for a simple shell, the displacements will be here sought
in the following forms:
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Substituting equation (17) into equation (14) and making use of the orthogonality of the
trigonometric functions result in
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where
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and m

"2�Rh¸�/4. For conciseness, the de"nitions of the sub-matrices and sub-vectors in

equations (19) are given in Appendix A.
The force terms on the right-hand side of equation (18) attribute to the reaction forces

that are dependent upon the relative motions between the machine and the shell at the
isolator locations. Therefore, equations (18) and (11) are actually coupled together and have
to be solved simultaneously for the vibrations of the machine and shell.

2.3. THE COUPLED EQUATIONS FOR THE MACHINE AND SHELL

For the sake of convenience, the Cartesian and cylindrical co-ordinate systems have been,
respectively, used in describing the motions of the machine and shell. However, the
relationship between these two co-ordinate systems can be readily established in terms of an
orthogonal transformation matrix. Let U�

�
be the displacement vector at the ith isolator

location in the cylindrical co-ordinate system. Then, its counterpart in the Cartesian
co-ordinate system can be expressed as
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where

Q
�
"�

Q<
�

0

0 Q<
�
� , Q<

�
"

1 0 0

0 cos �
�

sin �
�

0 !sin �
�

cos �
�

. (21, 22)

Similarly, the forces applied to the shell by the ith isolator can be obtained from
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According to equation (15), one has
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In light of equations (17), equation (26) can be rewritten as
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can be obtained from equations (29) by simply replacing cos n�
and sin n� with sin n� and cos n� respectively.

Combining equations (16), (24) and (28) with equation (18) results in
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Similarly, making using of equations (20) and (28), equation (11) can be rewritten as
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Finally, combining equations (30) and (33) will lead to a coupled equation:
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Clearly, the modal properties and the responses (to a given load) of the composite isolation
system can now be readily determined from equation (34). Since equation (34) is often
repeatedly solved at many frequency steps, the modal superposition technique will be
employed in the subsequent calculations.

It is evident from equation (34) that the contributions of the odd and even modes can no
longer be separated mathematically due to the presence of the isolators manifested in the
o!-diagonal matrices. In other words, the overall response cannot be generally obtained by
independently expressing the displacements as a superposition of only even or odd modes
and then simply adding the (even and odd) results together, as often done in determining the
response of a simple shell to an applied load.

2.4. VIBRATIONAL POWER FLOWS INTO THE SUPPORTING SHELL

The power #ow, say, through the jth isolator into the supporting shell can be obtained
from

P
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where R and * denote the real part and complex conjugate of a complex variable
respectively. Substituting equations (24) and (26) into equation (35) results in
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In equation (37), the quantity P
�� represents the power #ow (through the jth isolator)

associated only with the displacementU�
��, as though the other two displacements were zero.

In contrast, the quantity P
��� in equation (38) represents the power #ow corresponding to

the cross coupling between any two di!erent displacements. It is interesting that the power
#ows resulting from the cross coupling do not directly depend upon the motion of the
machine. Experimentally, equation (36) may actually lead to an alternative technique (to
the familiar impedance technique) for measuring the power transmission through isolators
into the supporting structure.
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The total or net power #ow is the sum of the power #ows through each of the isolators,
namely,
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�
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��
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, (40)

where
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P
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P
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The total power #ow is clearly a function of these variables used to describe the physical
properties of the concerned components such as vibration isolators and the supporting
shell. In addition, it is also dependent upon the locations of the vibration isolators with
respect to the cylindrical shell. Therefore, in a vibration isolation design the total power can
be conveniently used as a cost function to be minimized against any of these parameters.

It should be noted that although the current study has been focused on a simple
cylindrical shell, other real-life structural features like reinforcing rings and beams can be
readily taken into account without di$culties.

3. RESULTS AND DISCUSSIONS

Consider a machine mounted, via four identical vibration isolators, onto a circular
cylindrical shell of radius R"0)5 m, length ¸"10R and thickness h"0)02R. The material
properties for the shell are taken as: E"2)07�10�� N/m�, �"0)3 and �"7800 kg/m�.
The co-ordinates (x, �), for the locations of the isolators are as follows: (2R, �/12),
(2R, !�/12), (4R, �/12), and (4R, !�/12). The CG of the machine is located at x"3R,
y"0 and z"1)5R. Other related model parameters are given in Table 1. For simplicity,
a uniform modal damping, 1%, is assumed for the whole isolation system and an extra 2%
hysteresis damping is added to the isolators. In all the following examples, the Fourier
expansions are truncated to M"7 and N"15. Since the isolator spacing in the axial
direction is roughly twice larger than that in the circumferential direction, more
circumferential terms are chosen here so that the spatial resolutions will be about the same
with respect to the wavelengths in both directions.

3.1. THE MODES FOR THE LOADED SHELL

To better understand the following discussions on power #ows, let us "rst examine the
modal modi"cations resulting from the addition of the machine and isolators to the shell.
TABLE 1

¹he properties of the machine, isolators and cylinder

Machine Cylinder Isolators

m"1000 kg R"0)5 m K
	
"K
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"3)5�10�N/m
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"102)5 kg/m� ¸"10R K�
	
"K�



"K�

�
"k


/100 Nm/rad

I
��

"312)5 kg/m� h"0)02R
I
��

"290 kg/m�



Figure 2. Modal co-ordinates for the (1, 2) mode and its counterparts: (a) f
�
"44)48 Hz, k


"0;

(b) f
�
"49)11 Hz, k


"3)5�10� and (c) f

�
"30)15 Hz, k


"3)5�10.
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The modal properties can be readily obtained from equation (34) by setting the (right-hand
side) force vector to zero. It should be noted that all the elements in each eigenvector, except
for those corresponding to the d.o.f.s for the machine, are actually the Fourier coe$cients
from which the traditional mode shape can be directly determined from equations (17). In
Figures 2 and 3, two lower order shell modes are plotted for three di!erent isolator
sti!nesses, k


"0, 3)5�10�, 3)5�10, which are, respectively, intended to represent the

no/weak, moderate and strong coupling between the shell and the machine. A one-to-one
mapping can be easily established between the Fourier coe$cients and the components of
an eigenvector. For example, the Fourier coe$cients are arranged in Figures 2 and 3 as
follows: �a

��
,2, a

��
,2, a

��
, a

��
,2, a

��
,2, a

��
, d

��
,2, d

��
,2, d

��
, d

��
,2, d

��
,2,d

��
,

e
��
,2, e

��
,2, e

��
, e

��
,2,e

��
,2, e

��
�. Generally, there is a total of 6MN!3M Fourier

coe$cients. However, due to the symmetric nature of these two modes, all the Fourier
coe$cients corresponding to the asymmetric terms are virtually zero. For k


"0, the

motions of the shell and rigid body become completely independent and each mode is
simply represented by three vertical lines from whose positions its modal indices, (m, n), can
be easily identi"ed. It should be noticed that even if the lower order modes for a thin shell
can often be characterized as primarily radial (refer to the (1, 1) mode in Figure 2(a)), it does
not necessarily suggest that the radial displacement is always dominant (refer to the (1, 1)
mode in Figure 3(a)). As seen later, this clari"cation will help to explain why it may not be
su$cient to only consider the radial displacement in power #ow calculations. For
a moderate isolator sti!ness such as k


"3)5�10�, the presence of the machine will have

a certain in#uence on the modal behaviors for the simple shell. However, the modal
modi"cations are typically manifested in the slight shifts of natural frequencies and minor
distortions to the original mode shapes. For a very large isolator sti!ness such as
k

"3)5�10, the shell and machine are virtually joined together and the machine behaves

more like a mass loading to the shell. Consequently, the new modes become much more
complicated and unpredictable.



Figure 3. Modal co-ordinates for the (1, 1) mode and its counterparts: (a) f
��

"101)6 Hz, k

"0;

(b) f
��

"102)2 Hz, k

"3)5�10� and (c) f

�
"92)62 Hz, k


"3)5�10.
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3.2. VIBRATIONAL POWER FLOWS INTO THE SUPPORTING SHELL

Suppose the machine is subject to a vertical force, F
�
"�N. This particular form of

spectrum is simply chosen to reduce the dynamic range of the response variables such as the
power #ows into the supporting shell. The curves in Figure 4 show the total or net powers
transmitted through four isolators (k


"3)5�10�) into the supporting shell. While the solid

line has considered the contributions of all three displacement components, the dash curve
has only accounted for the contribution of the radial displacement. It is seen that in this
particular case, the radial vibration of the shell has played a dominant role in conveying the
vibrational powers. This outcome, however, should not come as a surprise. In view of the
manner in which the external force is applied, one can intuitively expect that the reaction
forces at the isolator locations will be primarily in the vertical (or almost radial) directions.
Since the power #ows depend upon both the reaction forces and the velocities at the isolator
locations, the &&primarily radial'' motions plus predominantly radial forces dictate the
(power transmission) characteristic observed in Figure 4. However, this observation should
not be perceived as a general testimony because there is no guarantee that the reaction
forces are always predominantly in the radial directions. This will become clear from the
following examples.

Now, consider a transverse force, F
�
"�N, is applied to the machine. Figure 5 shows

the total power #ows associated with the radial, tangential and all three displacements. The
power #ow associated with the axial displacement is not plotted simply because of its
insigni"cance. Intutitively, for this load condition the reaction forces will essentially exert
a primarily transverse or tangential force on the shell. Unlike the previous example, it is
clearly inadequate here to only take into account the radial displacement. This notion is
also true for some other non-radial-only load conditions, for example, when a moment,
M

�
"�Nm, about the x-axis is applied. The corresponding power #ow curves are given



Figure 4. Total power #ows (in dB ref. 1 W): **, equation (40); - - - - , due to radial displacement only;
F
�
"�N.

Figure 5. Total power #ows (in dB ref. 1 W):**, equation (40); (a) - - - -, due to radial displacement; (b) }} } },
due to transverse displacement; F

�
"�N.
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in Figure 6. Intuitively, for this load condition the resultant reaction forces
approximately consist of a transverse force, a vertical force and a moment about x-axis.
While the transverse force primarily sustains the power #ow associated with the
circumferential displacement, the other two predominantly maintain the power #ows
associated with the #exural motions. Again, due to the way in which the load is applied,
the power #ow associated with the axial displacement is substantially small and is not
shown here.

It has been observed in the last two examples that only consideration of the radial
displacement or #exural motions cannot accurately determine the power #ows from



Figure 6. Total power #ows (in dB ref. 1 W):**, equation (40); (a) - - - -, due to radial displacement; (b) }} } },
due to transverse displacement; M

�
"�Nm.

POWER TRANSMISSION TO CYLINDRICAL SHELL 295
a vibratory machine to its supporting structure. Even though a qualitative characterization
of the reaction forces has been attempted in each of the previous load cases, it may
not be always possible for many real-world problems which are often less ideal with
respect to isolator arrangement, the inertial matrix of a machine, loading condition, and so
on. Therefore, it is risky to automatically assume that only the radial displacement or
#exural motions are important in coveying vibrational powers to a machine supporting
structure.

3.3. THE EFFECTS OF THE CROSS COUPLING OF DISPLACEMENTS

So far, the discussions have been focused on the contributions to power #ows of the radial
and non-radial displacement components. A further examination indicates that the power
#ows resulting from the cross coupling of di!erent displacements are essentially
meaningless in all the three examples. Because this observation is not sensitive to the load
conditions, one has to turn to other model variables to see the e!ects, if any, of the cross
coupling of the displacements. Intuitively, one can expect that the degree of the cross
coupling between any two displacements will increase with isolator sti!ness. Accordingly,
let us now specify the isolator sti!ness as k


"3)5�10. This may be considered as a case,

for example, when the machine is rigidly mounted onto the shell through a set of bolts
instead of vibration isolators. In order to understand the importance of the cross coupling,
the power #ows calculated in various manners are compared in Figure 7 for F

�
"�N and

in Figure 8 for the simultaneous action of F
�
"�N and M

�
"�Nm. It is seen that in

both cases the power #ows, P
��
, determined without considering the e!ects of the cross

coupling are essentially not acceptable at low frequencies. The missing portions of the
curves indicate negative power #ows (that is, from the supporting structure to the source
machine) at the corresponding frequencies. Although the total or net power always #ows
from the source machine to the receiving structure, the partial power #ows, P

��
and P

��
, can

go in any direction. At a given frequency (e.g., 20 Hz), the contribution from the cross
coupling exceeding the total power suggests that the same amount of power, P

��
, is

conveyed back to the machine. One should also notice that the power #ow, P
��
, resulting

from the cross coupling becomes less important at higher frequencies, and approximately
levels o! as frequency further increases.



Figure 7. Total power #ows (in dB ref. 1 W): **, equation (40); (a) - - - -, no cross coupling, equation (41);
(b) - - - -, only due to cross coupling, equation (42); k


"3)5�10; F

�
"�N.

Figure 8. Total power #ows (in dB ref. 1 W): **, equation (40); (a) - - - -, no cross coupling, equation (41);
(b) - - - -, only due to cross coupling, equation (42); k


"3)5�10; F

�
"�N and M

�
"�Nm.
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4. CONCLUSIONS

Vibrational power #ows from a source machine into its supporting cylindrical shell are
studied with consideration of both the radial and non-radial motions of the shell. The
vibrations of the shell are determined from the Goldenveizer}Novozhilov (or
Arnold}Warburton) equations that are usually considered more accurate than the popular
Donnell}Mushtari equations, especially for shells with a large length-to-radius ratio. The
complete Fourier expansions (consisting of both symmetric and asymmetric terms) of the
displacements in the circumferential direction allow a correct prediction of power #ows for
complex isolation systems involving, say, a non-symmetric mass matrix, a general isolator
placement plan, and/or complicated load conditions. It is emphasized that the primarily
radial motion of a thin shell does not necessarily dictate that the vibrational power
transmission is predominantly carried out by the radial displacement, such that only the
#exural motion needs to be taken into consideration. This notion is subsequently reinforced
by numerical results which clearly indicate that the non-radial displacements can be as
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important as the radial displacement in transferring vibrational powers to a supporting
shell.

Another issue discussed is concerned with the e!ects on the power #ows of the cross
coupling of the displacement components. When the vibration isolators are su$ciently soft,
the cross coupling appears to have a negligible impact on the power #ows. However, it is
numerically demonstrated that for very sti! isolators (or more appropriately, connectors),
the power #ows resulting from the cross coupling can become meaningfully important,
especially at low frequencies. From an analytical point of view, the consideration of the
cross coupling will not add any signi"cant di$culties to the power #ow calculations.
However, it may become critical if power #ows are to be measured experimentally.
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APPENDIX A: THE DEFINITIONS OF THE SUB-MATRICES

The elements of the sub-matrices in equations (19) are de"ned as follows:
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APPENDIX B: NOMENCLATURE

a
��
, b

��
, c

��
, d

��
,

e
��
, f

��
, Fourier expansion coe$cients

E Young's modulus
f external forces applied to the machine
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G
�

transformation matrix
h shell thickness
I
��
, I

��
,

I
��
,2, I

��
, I

��
moments of inertia of the source machine

i" (!1)���
K� global sti!ness matrix
K

�
sti!ness matrix of the ith isolator

Kg

�
" G�

�
K

�
K	

�
,K


�
,K�

�
linear sti!nesses in the principal directions of the ith isolator

K�	
�
, K�


�
, K��

�
rotational sti!nesses in the principal directions of the ith isolator

¸ length of a cylindrical shell
M mass matrix
M,N numbers of expansion terms used in s and � direction respectively
m mass of a rigid-body machine
P
�

power #ow through the ith isolator
P
�

total power #ow through all isolators
P
��

total power #ow calculated without considering the cross coupling
P
��

total power #ow resulting from the cross coupling
p

, p�, p� distributed forces in s ("x/R), � and r directions

Q
�
, Q<

�
co-ordinate transformation matrices

R
�

reaction force at the ith isolator location
R


�
reaction force at the ith isolator location in cylindrical co-ordinate system

R�
�

load due to the reaction force at the ith isolator location
R shell radius
s" x/¸
T
�
, T<

�
co-ordinate transformation matrices

U�
�

displacements at the ith isolator in the cylindrical co-ordinate system
u
�
, u�

�
displacement vectors at the upper and lower ends of the ith isolator

u� displacement vector of the center of gravity of the source machine
u, v, w axial, transverse (or circumferential) and radial displacements
x, �, r cylindrical co-ordinates
�
��

Kronecker delta function
�(x, y) delta function
�" h�/12R�
�
�
" m�R/¸

� the Poisson ratio
� mass density
 frequency in radian
� �" E

�(1!�)R�
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